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Abstract  
 

Deliverable abstract  

One of the challenges regarding the development of a wing system for main vessel propulsion is to gain insight 

into its real-life structural integrity. This would allow early detection and identification of malfunction and 

degradation of its critical mechanical components. To address this challenge, the main objective of WP3.2 is to 

develop a data-driven numerical framework for structural integrity assessment of the wing system. The framework 

includes digital twinning of the wing system and will integrate real-time load monitoring sensors and numerical 

models of material and joint degradation that allow fatigue lifetime prediction. 

The prolonged exposure to wind and inertia loads and environmental conditions leads to structural degradation 

of the wing structure. This work focuses on fatigue, the progressive and localized structural damage occurring 

under cyclic loading. It is the primary degradation mechanism affecting the components and joints of the wing 

structure. 

To model the fatigue life of the wing sail, the stochastic nature of both the operational load and material strength 

degradation has to be considered. In this work, algorithms and reduced-order models will be developed aimed at 

simulating the degradation and fatigue life of critical mechanical components of the wing system subjected to 

uncertain operating conditions. Leveraging stochastic finite element simulation techniques and surrogate models, 

the study uses endurance based fatigue life prediction methods (also known as S-N approach). The stochastic 

finite element simulation enables the consideration of uncertainties in input parameters such as load and material 

properties. A Design of Experiment (DoE) framework is used to represent a spectrum of load and material input 

parameters. This approach allows for the systematic exploration of the parameter space, facilitating a deeper 

understanding of the impact of these factors on component degradation and lifetime. To mitigate the 

computational intensity of simulations, surrogate models are developed. Surrogate models serve as efficient 

approximations of the complex finite element simulations, allowing for faster evaluations across a range of input 

parameters while maintaining accuracy within acceptable margins. The fatigue life analysis is based on 

established S-N curves obtained from open-source literature, specifically tailored for steel components, welded 

joints, and (composite) sandwich structures. The integration of these curves into the predictive models forms a 

basis for assessing the fatigue life under varying load conditions. 

To qualify and quantify the effects of component failure on the structural integrity and safety of the entire wing 

system, the wing system is divided into three subsystems: foundation, main wing, and flap wing. To understand 

the interplay between fatigue reliability and structural integrity, a Fault Tree Diagram (FTD) is developed. This 

diagram illustrates the relationship between the overall integrity of the wing system and the fatigue failure of its 

individual, crucial components. Leveraging the design configuration of the wing system and drawing from fault 

tree diagrams developed for offshore wind turbine blades, an equivalent Bayesian network is created. Using the 

Continuous Time Bayesian Networks (CTBNs) method and the probability of failure (PoF) of the components, 

the system's fatigue reliability is estimated. This approach allows for detailed quantification of how component 

failures impact the overall structural integrity and safety of the entire wing system. 

In practical operational scenarios, (real-time) load data will be collected from field sensors. The developed 

surrogate models will allow to evaluate the structural response of components within the wing system using the 

sensors’ data. The obtained structural response data will be integrated into the probabilistic fatigue lifetime and 

system reliability assessment models. The integration of these approaches aims to enhance the safety and 

reliability of the wing system by enabling early detection of issues and implementing proactive maintenance 

strategies. 
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1 Introduction 

1.1 Wing system for wind-assisted propulsion system  

The stresses experienced by any component of the wing system should not exceed the allowable stresses under 

either normal or extreme operating conditions. Given that the wing system will operate under highly stochastic, cyclic 

loading conditions, the fatigue limit state is most probably the critical limit state for design. This work aims to estimate 

the fatigue reliability and to assess the structural integrity of the wing system based on the failure contribution of the 

system components by considering load and material uncertainties. 

This study considers the geometrical design configurations of “the two-wing element or Oceanbird’s wingsail design” 

designed by Alfa Wall. The wing system comprises three structural subsystems: (1) the foundation structure, (2) the 

main wing, and (3) the flap wing, shown in Figure 1. The fatigue reliability of the entire wing system is to be studied 

based on the failure contribution of its subsystems. The foundation structure and support structure of the wing system 

(i.e., the mast structure) are the two main load-bearing structures; hence a detailed fatigue lifetime analysis is required 

for these structures. The mast support structure of the wing system is being studied as one of the components within 

the main wing subsystem, whereas the foundation is studied as a separate subsystem.  

The fatigue loading scenarios that are considered In the structural reliability analysis of this study, are based on DNV 

standards. The combination of wind and inertia loads are taken as the primary loads applied on the wing system, 

based on the DNV standard ST-0511 (DNV-ST-0511, 2022). The combination of the reaction forces and moments 

due to the overturning moment of the wing system and horizontal stress in the deck due to global wave bending of the 

hull girder will be considered in the fatigue life analysis of the foundation structure and its components. 

Finite Element Analysis (FEA) will be used to model the structural response. Based on those results the fatigue 

performance of the system can be analyzed. Multi-scale Finite Element (FE) simulations for each subsystem will be 

applied to reduce the complexity and computational costs with the consideration of load and material uncertainties. 

The first stage of this study is the reliability estimation of the main wing subsystem. Next, a fatigue reliability study of 

the foundation structure will be performed using the aerodynamic and inertial loads at the interface between the main 

wing system and the foundation.  

 

Figure 1 Oceanbird’s wing system 

The geometrical configuration of the main wing subsystem structure shown in Figure 2 is taken from AlfaWall's 

“Oceanbird wing 560” general assembly drawing data. The figure shows the naming convention of the different 

components used for this study. 
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Figure 2 Components of the main wing subsystem from AlfaWall Oceanbird wing design 

1.2 Main wing subsystem - fatigue reliability evaluation methodology  

In actual engineering design, obtaining the exact solution for the failure probability of a system is impossible due to 

the stochastic nature of the input parameters. MC (Monte Carlo) simulations, First-Order Reliability Method (FORM), 

and Second-Order Reliability Method (SORM) are some of the common methods being used to obtain approximated 

solutions, especially for not too complex structures. Though it requires a large sample size, and each sample implies 

a deterministic structural response analysis, the MC simulation method is simple and widely applicable. However, the 

direct application of the FORM/SORM and MC simulation techniques becomes inefficient and impractical when the 

limit state function (LSF) is not explicitly available in a closed-form equation. In such cases, numerical calculation 

procedures are necessary such as FEA of the global system and/or subsystems (Shittu, Kolios, et al., 2021), (Chen 

et al., 2024). Finite Element Analysis (FEA), for instance, involves breaking down a structure into numerous small 

elements and performing calculations across these elements in a continuous manner to understand the behavior of 

the entire structure. Since the main wing system is composed of a variety of materials, has intricate geometries, and 

is subjected to multi-axial and non-linear loads, it is challenging to fully evaluate its structural reliability with simple 

numerical models. Therefore, the stochastic FEA technique is used to obtain the structural response and define the 

fatigue LSF of the system.  
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In the stochastic FEA, the uncertain nature of the input parameters can be represented by using representative 

samples generated using Quasi-Monte Carlo Sampling (QMCS). Considering the computational expense of the FE 

simulations, surrogate models will be developed based on the FE simulation results obtained for the representative 

samples. Next the surrogate models will be used to determine a sufficient amount of stress field data. This data is then 

used to determine the probability distribution function (PDF) of the fatigue stress amplitude at critical locations of each 

component. MC simulation will be applied to determine components’ fatigue lifetime using the obtained stress 

amplitude data and fatigue deterioration models (S-N curves)  of components based on open-access fatigue test data. 

This is motivated by the fact that, with an increasing number of samples, the MC simulation method can converge to 

the true and correct probabilistic results (Shittu et al., 2020). Based on the fatigue lifetime estimation of critical locations 

in each component obtained from the MC simulations, the corresponding components’ fatigue lifetime probability 

distribution function will be obtained. A basic Fault Tree Diagram (FTD) is then constructed to illustrate the hierarchical 

relation between the fatigue failure of the wing system (top event) and the fatigue failure of its critical components 

(basic events). This FTD will be represented by equivalent Bayesian networks. Subsequently, the fatigue reliability of 

the wing system will be estimated through the utilization of the components’ probability of failure (PoF) and the 

Continuous Time Bayesian Networks (CTBNs) method.  

In practical operational scenarios, real-time load data (potentially supplemented with structural health data) will 

periodically or continuously stream from field sensors. Surrogate models will evaluate the structural response of 

components in the wing system using the monitored load data. The obtained structural response data will be integrated 

into the probabilistic fatigue lifetime assessment models. The integration of these approaches aims to enhance the 

safety and reliability of the wing system by enabling early detection of issues and implementing proactive maintenance 
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strategies. The structural integrity assessment framework for the wing system is illustrated in Figure 3. More details of 

the phases involved in evaluating fatigue reliability within the framework are outlined in section 2 of the document.  

 

 
Figure 3 Data-driven numerical framework for the structural integrity assessment of the wing system 

2 Data-driven numerical framework for the structural integrity assessment of the wing system: description of the 
main tools 

2.1  Design of experiments (DoE): generation of representative samples 

The incorporation of parameter uncertainties and methods to describe and address these uncertainties in structural 

analysis have been a prominent research focus over the past 30 years (Y. Liu et al., 2019). Studies indicate that one 

of the most significant concerns of stochastic simulations is efficiently and accurately generating suitable random fields 

to represent the uncertainties. Balancing the accuracy and the computational costs, an appropriate number of random 

fields need to be generated in any stochastic simulation. 

In this work, material and load uncertainties are represented by independent random variables as input parameters 

for FE simulations. Table 1 provides an overview of the considered random variables, their mean values and 

coefficients of variation (CoV). Deterministic FE simulations are performed with representative samples from these 

variables. A large number of possible combinations of values is expected; it is computationally too expensive to 

consider all combinations in the FEA. Therefore, a multidimensional random sampling technique is applied to generate 
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representative combinations of values that cover the design space more uniformly ensuring that each interval contains 

a maximum of one sample. This can be achieved with Quasi Monte Carlo (QMC) sampling. 

Table 1 Input parameters and their uncertainties 

Input Parameters Units Distributions Mean 
CoV 

% 
References 

True wind speed m/s Gaussian 6.84 43.3 IMO MEPC.1/Circ.896 

Critical angle of attack degrees Gaussian 16 18.75 (C. Li et al., 2023) 

Vessel speed  m/s  
Uniform: 

ranges   
5.15 7.2 Orcelle GA Document 

Density of air kg/mm3 Gaussian 1.23 5.61 - 

Steel S690QL elastic modulus GPa Gaussian 210 15 (Kolios et al., 2018) 

PET foam shear modulus MPa Gaussian 128.75 210 1(Xie et al., 2022),  

2(Kim & Hwang, 2004)  GFRP elastic modulus GPa Gaussian 115.75 210 

2.2 Finite element simulations 

FEA is a suitable tool for fatigue performance simulations of structures where the full-scale testing is overly complex 

and costly. In a wing-assisted propulsion system, the wing system should resist combined environmental phenomena 

of uncertain magnitude (e.g. wind, wave, operational loads, etc). Since full-scale testing is challenging, the stochastic 

response of a structure under specific loading conditions is determined through FEA.  

Each of the wing system’s three subsystems (the foundation, main wing, and flap wing) contains structural components 

and joints. To effectively analyse the entire wing system, a multi-scale finite element modeling approach is used. This 

method is particularly advantageous for large and complex structures. In this work, the focus is on the analysis of the 

main wing subsystem. Deterministic FE simulations are performed for each combination of the considered 

representative samples of combinations of input parameters. The details of the FE model are described in Table 2.  

The fatigue loads acting on the wing system and foundation structure included in the structural design load calculations 

are based on DNV’s standard on wind-assisted propulsion systems (WAPS) (DNV-ST-0511, 2022). Wind and inertial 

loads are the two fundamental loads to be considered in the fatigue analysis of the wing system. Inertia loads are 

loads excited by the motion of the vessel and the self-weight of the WAPS.  

Table 2 FE model information 

CAD model of the main 

wing system   

Using AlfaWall Oceanbird wing design general assembly drawing The airfoil shape of 

the main wing (NACA0025) is taken from an open-access airfoil design website.  

Software Abaqus v2023, Python, X-foil 6.99 

External load and 

boundary conditions  

Fatigue loads: wind and inertia loads are considered based on DNV-ST-0511 (2022). 

The mean wind speed data at 10m above the sea surface with probability for different 

'wind states' characterized by true wind speed and true heading relative to the ship is 

taken from the Global Wind Probability Matrix data IMO MEPC.1/Circ.896 appendix 2 of 

the IMO circular. 

Aerodynamic pressure 

load model  

Data regarding the distribution of pressure over the suction and pressure sides of the 

airfoil across its chord length is taken from X-foil 6.99 open-source software. 

Data regarding the variation of lift and drag coefficients of NACA 0025 airfoil to the angle 

of attack is taken from the work of Klemperer et al. (Klemperer et al., 2023). 
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Inertia load  DNV inertia load modeling procedures are applied for a Ro-Ro ship having the main 

dimensions of the ship reported in the work of Nielsen et al.  (Nielsen et al., 2019). 

The primary output of the FEA is the nominal stress field of critical components within the main wing subsystem. These 

stress field outputs serve as input for training a surrogate model. The stress fields determined with the surrogate model 

will enable the determination of the fatigue lifetime for these specific components.  

2.3 Surrogate model development  

In the past 20 years, the application of surrogate models for structural reliability analysis has grown (Chen et al., 2024). 

The two primary objectives of surrogate models in this study are (1) to generate larger datasets of components’ stress 

fields to obtain more representative probability distribution functions, and (2) to enable real-time evaluation of the 

structural response of the wing system given real-time or periodically assessed data from load  sensors.  

Why is the generation of larger stress field datasets needed? Although the QMC sampling used in the DoE stage is 

one of the best methods for multivariable sampling and has superior performance on the uniformly covering of the 

probability space, it cannot consider all the possible combinations of input variables. In addition, the FE model of the 

main wing system is computationally expensive, so it is not feasible to conduct deterministic FE simulations for many 

representative samples. The latter is required to determine representative stress field probability density functions. 

Therefore, surrogate models will be developed using a learning dataset of the limited numbers of samples of the 

combinations of input parameters and their corresponding FE simulations stress field outputs. The surrogate models 

will give the possibility of determining stress field outputs for a larger number of input variable combinations for critical 

components of the main wing system than what is possible with the FE simulations. 

In FEA-assisted reliability analysis, various surrogate modeling techniques such as Artificial Neural Network (ANN) 

(Shittu, Mehmanparast, et al., 2021), Support Vector Machine (SVM) (Z. Liu et al., 2023), and Kriging model (Chen et 

al., 2024) are applicable for deriving the performance functions expressed in terms of stochastic variables. In this 

study, fatigue load parameters and material data serve as the inputs, and the stress fields in critical regions of the 

components as outputs for the surrogate model. 

Though the surrogate model type to be used is not yet decided, one of the most popular applicable models is the 

Feed-forward Neural Network (FNN). Figure 4 shows the architecture of the FNN in which the samples representing 

load and material properties are the input variables and the corresponding stress field outputs resulting from the FE 

simulations are output variables. The FNN models will establish an implicit function relationship of load, material 

parameters, etc., with the nominal stress of critical regions in each component. 
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Figure 4 Single hidden layer Feed-forward Neural Network (FNN) 

If the predictive performance of the models falls below satisfactory levels, additional representative samples of a 

combination of input parameters can be generated using the same sampling technique, and FE simulations will be 

conducted using these new samples. This step would be continued until the performance of the surrogate model 

reaches the desired level. The stress field outputs obtained from these simulations will then enhance the knowledge 

of the model. Subsequently, validated surrogate models will be acquired and utilized to generate stress field data for 

larger sets of combined input parameters, thereby expanding the nominal stress field dataset for each component. 

To quantify the uncertainty in the nominal stress range affected by random loads and uncertain material parameters, 

various probability distributions, such as lognormal, Weibull, Gamma distributions, etc., will be employed to fit the 

regenerated data. The most suitable probability distribution function will be selected for further analysis of the 

probabilistic fatigue lifetime of components. 

The generation of additional samples will be done with sampling techniques that improve the performance of the 

surrogate model. This is most commonly done through adaptive sampling (Hu & Mahadevan, 2018). An adaptive 

sampling strategy or learning function guides the selection of candidate samples to update the sample set during the 

analysis process (Chen et al., 2024). Exploitation-based and exploration-based sequential design methods are the 

two most common adaptive sampling methods. In exploration-based ones, new sample points will be searched from 

the dense region in the sample space and taken from the dense sample space and filled up evenly (Zhang et al., 

2023). This method will be applied in this study.  

In addition to generating larger datasets, the developed surrogate models will be used to predict the stress field at 

critical regions of the components from the real-time load monitoring sensors. In this case, the pre-processed load 

data from the load monitoring sensors will be fed into the models, and the models will predict the stress field output 

corresponding to each input value. Then, the same procedure will be applied to calculate the probability of failure of 

that component using the stress amplitude data obtained from the real-time load sensors. 
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2.4 Components’ fatigue lifetime prediction  

2.4.1 Introduction  

The wing system is composed of different components mainly made up of high-strength steel (S690QL) and 

composite-based sandwich panels (glass fiber reinforced polymer (GFRP) face sheets and PET foam core). The 

fatigue deterioration modes of these components depend on the constituent materials. In this work, the focus is on 

macroscopic/component level fatigue failure. For sandwich composite panel components, the fatigue strength 

estimation method is based on the shear failure of the core element/region and the tensile/compressive failure of the 

face sheet laminates. For the steel components and their welds, fatigue strength is dominated by principal stresses 

that can be determined using either the nominal stress approach and known stress concentration factors, or either the 

structural stress approach that accounts for stress concentration resulting from the weld joint. Fatigue strength data 

(i.e. S-N curves) of components are taken from open-source literature.  

Lifetime probability distribution data of the components is a prerequisite to perform the structural reliability analysis of 

systems by using Bayesian Networks (BNs). For most marine systems, there is a scarcity of lifetime distributions and 

likelihood data for the characterization of component lifetime. Most system reliability analysis studies express the 

probabilities of failure, commonly using exponential equations, with a constant failure rate parameter. The failure rate 

parameter is usually taken from reports, manuals, and expert opinion (H. Li et al., 2020). Besides the lack of failure 

rate data for structures similar to the studied wing sail, the fatigue failure rate of a component cannot be accurately 

represented by a constant parameter. In this study, the lifetime distributions of the main wing system components will 

be obtained using probabilistic finite element and fatigue strength analyses. 

2.4.2 Fatigue life assessment 

The most common fatigue life evaluation method for structural components is a fatigue damage accumulation analysis 

based on Miner's rule and the well-known S-N curves. In this study, the S-N approach will be the primary method to 

be applied for all components of the main wing subsystem. A fatigue damage accumulation model predicts the fatigue 

life of a structure subjected to a certain stress spectrum by combining the stress history with the S-N curve data. In 

this case, the stress-based S-N curve (including stress correction factors) is the data source for fatigue life calculation, 

and the load sequence effect is usually neglected. For stress levels lower than the fatigue limit, the number of cycles 

to failure Nf is assumed to be infinity, which means the stress fluctuations below the fatigue limit are non-damaging, 

according to the Miner rule. However, it has generally been accepted that there is no fatigue limit in variable amplitude 

loading conditions. Therefore, modification of the S-N curves for stress ranges lower than the fatigue limit will be 

considered in this study.  

By using the surrogate model described higher (trained based on the stress field output results obtained from FEA), a 

large amount of stochastic stress amplitude data will be generated for critical regions of each component. The obtained 

stochastic stress amplitude data will be fitted with probability distributions which can represent the stress range 

parameter. The fatigue lifetime of components will be determined by combining the obtained stress range distribution 

and nominal stress-based S-N curve constants using the MC simulation method. Then, the calculated components’ 

fatigue lifetime data will be fitted with a best-fit probability distribution model. The result will enable us to estimate 

reliability indices such as the probability of failure or reliability of each component within the subsystem. 

2.4.3 Welded steel joints 

Welds in steel structures are typical fatigue critical details. When using finite element analysis to assess welds, stress 

results will be non-converging due to the geometric discontinuity. In other words, the stresses tend to go to infinity as 

the mesh is further refined. Consequently, the stress values calculated by the finite element software exactly at the 

weld toe cannot be used for fatigue calculations directly. Generally, fatigue assessment of structural details requires 

determination of a nominal stress that can be used together with a stress concentration factor or an S-N curve of a 

certain joint configuration (also called detail category) that is reported in a structural design code. For complex parts, 

such information might not be available and determination of the nominal stress is difficult or even impossible. 

Therefore, the structural stress approach (also called hot spot stress approach) has been developed. In its most simple 



         

 

 

                                             

 

Orcelle Horizon Deliverable 3.2  Data-driven numerical framework for structural integrity assessment 

 13 (20) 

 

form it is based on the extrapolation of surface stresses calculated at two points located at different distances from the 

weld toe. The structural stress approach is well established at this point and has been adopted by design codes for 

both onshore and offshore applications. UGent has implemented this approach in a numerical framework that will be 

used in this project. 

2.4.4 Sandwich panel fatigue failure  

Sandwich composites can fail in several ways, including tension or compression failure of the facings, shear failure of 

the core, wrinkling failure of the compression facing, local indentation, debonding of the core/facing interface, and 

global buckling. The initiation, propagation, and interaction of failure modes depend on the type of loading, constituent 

material properties, and geometrical dimensions (Sharma et al., 2006). Fatigue damage models are widely adopted 

for fatigue life analysis of the sandwich components. The above-mentioned failure modes and the fatigue data (S-N 

curves, residual strength, or stiffness degradation rules) are the basis for life analysis. There are two approaches to 

analyse the life of sandwich composites based on the dominant failure mode of the component.  

The first approach assumes that, under cyclic loading conditions, the main failure mode of the sandwich panel is the 

shear failure of the core. This is because cyclic loading reduces the residual shear strength of the foam core. The 

subsequent face sheet fracture and face sheet/core delamination are caused by the core failure (Zaharia et al., 2020)., 

and the life of sandwich panels can be predicted by using the stress in the core and this can simplify the life prediction 

process of sandwich panels (Bednarcyk et al., 2013), (Ma et al., 2020).  

The second approach considers both main failure modes; face sheet tension/compression fracture and core shear 

failure (Zenkert & Burman, 2011a), (Ma et al., 2021), (Suzuki & Mahfuz, 2018). These researchers stated that for high 

load amplitude and a small number of cycles to failure, the beams fail by core shear fracture, while for lower loads and 

many cycles to failure the beams fail by face sheet tensile failure (Zenkert & Burman, 2011b). This is due to the 

difference in slopes of the S-N curves, especially the small slope of the core, resulting in an inflection point where the 

failure mode changed from core shear to skin tensile failure mode (Zenkert & Burman, 2011b), (Suzuki & Mahfuz, 

2018). In this study the second approach will be followed.  

2.5 Components’ fatigue reliability calculation 

Reliability analysis is performed to determine the probability that the structure or system satisfies its specified design 

function under a given service condition. This response is defined by a limit state function 𝑔(𝑥), and failure is defined 

as the point that the response function exceeds some threshold value 𝑔max. For a system with 𝑚 failure modes, the 

reliability 𝑅𝑚 is defined as:  

𝑅𝑚 = 𝑃[𝑔1(x) − 𝑔1
𝑚𝑎𝑥 ≤ 0 ∩ 𝑔2(x) − 𝑔2

𝑚𝑎𝑥 ≤ 0 ∩ ⋯ ∩ 𝑔𝑚(x) − 𝑔𝑚
𝑚𝑎𝑥 ≤ 0] (1) 

𝑅𝑚 = 1 − 𝑃𝑚𝑓 ≅ 1 − 𝑃[𝑚𝑖𝑛(𝑔1(x), 𝑔2(x), ⋯ , 𝑔𝑚(x)) > 0] (2) 

It is complex to calculate the reliability if there is interaction between the 𝑚 failure modes. A simplification can be made 

by only considering the most probable or a certain failure mode. The reliability can then be calculated with the equation 

below. This work focuses on the reliability of the system under fatigue loading, therefore component's reliability under 

fatigue failure mode could be expressed as. 

𝑅 =  1 −  𝑃[𝑔(𝑥)  > 0] (3) 

where 𝑔(𝑥) is the fatigue limit state function. The most simple case assumes the structure is subjected to constant 

amplitude stress for an infinite number of cycles and local fatigue strength is described by Gaussian distribution. The 

fatigue failure probability can be calculated as:  

𝑃𝑓 =  ∅(−𝛽) (4) 

Where  𝛽  is the fatigue strength reliability index or safety margin for failure probability, and ∅ is a normal standard 

cumulative distribution function operator. 
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In most real cases the stress amplitude is highly variable, therefore the fatigue assessment shall consider the 
dispersion of fatigue lives and uncertainty/scatter of the local stress spectrum. The stochastic assessment of fatigue 
life could be obtained by utilizing the concept of load spectrum and damage accumulation. The S-N curve could be 
expressed as follows, in Basquin’s equation:  

𝑁 =
𝐶

𝑆𝑘
 

(5) 

Fatigue life data could be evaluated for each stress block. Due to inherent variation in fatigue lives, 𝐶 is a random 

variable, 𝐶 = 𝑁. 𝑆𝑘.  The dispersion of 𝐶 would be related to the dispersion of fatigue lives that could be estimated with 
an appropriate interpolation of fatigue data. The cumulative fatigue damage of a stress spectrum consisting of L load 
bins, could be calculated as:  

𝐷 =
1

𝐶
. ∑ 𝑛𝑖𝑆𝑖

𝑘

𝐿

𝑖=1

 
(6) 

log(𝐷) = − log(𝐶) + log (∑ 𝑛𝑖𝑆𝑖
𝑘

𝐿

𝑖=1

) 
(7) 

The above equation shows that damage 𝐷 is a random variable with the same scatter as the fatigue life. The mean 

and dispersion values of the damage value 𝐷 can be calculated from its probability distribution. Then, with a given 

Miner index at failure, 𝐷𝑐𝑟, the probability of failure would be calculated by using the inverse of the cumulative 
distribution function as follows: 

𝑃𝑓 =  𝑃(𝐷 > 𝐷𝑐𝑟) =  ∅(−𝛽) (8) 

 

Figure 5 Schematic diagram of failure probability equivalence (Gao & Yuan, 2020) 

The fatigue damage generally exhibits a certain dispersion due to the randomness of the material properties and 

fatigue loads. This probabilistic formulation for damage calculations has the advantage of being easily applicable in a 

MC simulation method since the realizations of the damage can be obtained by simply calculating 𝐷 onto different 

realizations of the S–N diagram (Beretta & Regazzi, 2018). 

In fatigue reliability analysis, determining the likelihood of material failure under cyclic loading involves two approaches: 

one based on fatigue life distribution and another on fatigue damage distribution (Gao & Yuan, 2020). In Figure 5, the 

blue lines illustrate fatigue damage values as loading instances increase, while the green line represents the 

Probability Distribution Function (PDF) of fatigue life. The red curve represents the PDF of fatigue damage when 

loading instances reach '𝑛.' When considering a specific loading level and instances of loading, the failure probability 

computed through fatigue life distribution matches that calculated through fatigue damage distribution. The area 
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shaded by the blue lines equals that shaded by the green lines, clarifying the principle of failure probability equivalence 

(Gao & Yuan, 2020). 

2.6 System reliability estimation  

2.6.1 Wing system fault tree diagram  

One of the three subsystems of the wing system is the main wing sail subsystem which is assembled of many 

components. Though each component within the subsystem has a contribution to the system failure, it is 

computationally expensive to consider the failure contribution of all the components. Hence, this study focuses on the 

failure probability of components that have the most influence on the fatigue reliability of the main wing subsystem.  

A Bayesian Network (BN) model will be constructed based on the propagation of failure through the wing system which 

is represented by a Fault Tree Diagram (FTD) of the wing system. A FTD is a hierarchical diagram that demonstrates 

how failures propagate through systems. For the sake of this study, the failure propagation of the wing system is 

represented by the FTD shown in Figure 6. This FTD is constructed based on the wing system design configuration 

and by applying analogical relation with the FTD of offshore wind turbine blades (Z. Liu et al., 2023). The FTD specific 

to the main wing subsystem is described by the shaded nodes in Figure 6.  

In principle, the failure of the wing system is caused by a certain subsystem or component failures, which results from 

a combination of failure causes. The failure at any stage of the FTD represents an event with a certain probability. The 

failure of the wing system is the top event, failures of subsystems or components are intermediate events, and failure 

causes are basic events. The hierarchical relationships among events can be represented by logic gates e.g. AND 

and OR gates. The events of the main wing subsystem FTD, shown Figure 6, are Leading Edge Failure (LEF), Trailing 

Edge Failure (TEF), Rear Shear Web Failure (RSWF), Front Shear Web Failure (FSWF), Spar Caps Failure (suction-

side Spar Cap Failure (SSCF) and Pressure-Side Spar Cap Failure (PSCF)), Spar Beams Failure (SB1F, SB2F, SB3F 

and SB4F), Reinforcing Frames Failure (RFF) and Rib Failure(R1F, R2F, R3F, and R4F). The FTD shown in Figure 6 

is used to construct the continuous time BN model used for system reliability estimation (section 2.6.3). 
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Figure 6 Fatigue failure fault tree diagram of the wing system 

2.6.2 Reliability assessment methods  

Reliability Assessment (RA) plays a crucial role in minimizing potential downtime and the risk of system failures by 

identifying and addressing the weakest areas of the system. It is extensively utilized to quantify the Mean Time To 

Failure (MTTF) of a structure and to recommend proactive maintenance measures to prevent malfunctions before they 

occur. RA of offshore structural systems such as floating offshore wind turbines (H. Li et al., 2020), (Du et al., 2019) 

has three basic targets: (a) calculating the system reliability indices (failure probability, failure rate metering index, and 

mean time to failure of the system);  (b) determining the critical component(s) that can result in the failure of the system; 

and (c) suggest failure mitigation measures to reduce the probability of failure of the system. To achieve these targets, 

there are two common approaches: field data collection and model-based RA methods.  

RA based on field data collection requires actual system failure data recorded in real operating conditions of the 

system, which is quite expensive and rare for emerging technologies such as wingsail systems. The model-based RA 

approach theoretically calculates the reliability of systems according to structural relationships and failure data of their 

components (H. Li et al., 2020). Among the model-based RA methods, failure mode and defect analysis (FMDA) (Kang 

et al., 2017), fault tree analysis (FTA) (Kang et al., 2019), and Bayesian networks (BNs) methods are widely applied 

to the wind turbine systems failure analysis, such as the whole wind turbine system, the gearbox, the wind turbine 

blade and so on.  

Research findings suggested that the conventional FTA and its derived methods are naturally unprecise 

methodologies since they can be used to calculate either the upper bound or the lower bound of reliability of structural 

systems (H. Li et al., 2020). A combination of FTA-based methods has the potential to improve the accuracy of the 

analysis of reliability indices. However, this kind of approach is computationally expensive. BN methods are more 

computationally precise than the FTA method, as they can better deal with correlated data. Additionally, the predictive 
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and diagnostic information propagation capabilities enable BNs to accomplish reliability estimation and critical 

components identification of the system within one model (H. Li et al., 2020). 

Discrete-time Bayesian networks (DTBNs) have been applied for system reliability analysis of different structures such 

as floating offshore wind turbines (H. Li et al., 2020), (H. Li & Guedes Soares, 2022). Liu et al. (Z. Liu et al., 2023) 

performed a system reliability analysis of a composite wind turbine blade structure by using FEA and a continuous 

time BN-based fatigue reliability analysis method. The continuous-time BN method has an exact closed-form analytical 

expression, thus it is more suitable for reliability modeling and analysis when the states of the root nodes are 

continuous (Z. Liu et al., 2023).  

2.6.3 Wing system reliability analysis using CTBNs 

In the wing system, fatigue deterioration in various parts and subsystems of the wing structure is interconnected. 

Therefore, the fatigue failure probability of the entire wing system will be evaluated based on the failure contribution 

of each subsystem. The failure probability of the subsystem within the system is also based on the failure contribution 

of its components. Hence, the estimated fatigue reliability of each component is a building block for estimating the 

fatigue reliability and assessing the structural integrity of the entire wing system.  

The structural reliability assessment of the entire wing system will be done based on the generalized stochastic 

responses to be obtained from the stochastic FE simulation results. The FE simulation results (stress field outputs) 

are to be combined with the numerical reliability analysis procedures to calculate the reliability of the components. The 

failure mechanisms of structural systems and components are expressed through limit state functions (in this case 

fatigue), which distinguish a failure and a safe region of operation. For any structural system, the fatigue limit state 

function should link the loads acting on it locally to the response of each structural member. 

The CTBNs method will be utilized to calculate the entire wing system fatigue reliability. Reliability characteristics such 

as failure probability, failure rate, and mean time to failure of the system will be determined according to the Bayesian 

Network top-down reasoning pattern or predictive analysis.  

Initially, the FTD of the main wing subsystem needs to be translated into an equivalent BN as shown in Figure 7. Each 

basic event of the FTD is represented as a root node. All gates (including the top gate system failure) in the FTD are 

intermediate nodes in the BN and possess a Conditional Probability Table (CPT) associated with each one of them. 

CPTs and prior probability tables are defined according to the failure probability distributions of the basic components 

and the types of gates tying them together. 

 

Figure 7 Main wing structure failure fault tree diagram to Bayesian Networks (BNs) conversion 

Each node (or random variable) in the BN model represents a system component or the output of a gate. A system 

component can be either a basic component or a subsystem describing the interaction between a collection of 
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components. The states of a variable (or component) are interpreted as the failure of the component at a point in time. 

Root nodes have marginal prior probability tables associated with them, and all other nodes have CPTs associated 

with them. The CPT of a Random Variable (RV) specifies the probability of each of the variable’s states conditioned 

on the value of each of its parent nodes.  

 

Figure 8 Typical example of BNs 

There are two typical information propagation processes in BNs. Top-down (predictive-support reasoning) and bottom-

top (diagnostic-support reasoning) patterns. The bottom-up reasoning pattern propagates information by conditional 

probability function or Bayesian inference. The predictive-support reasoning pattern propagates information by joint 

probability function determined using the chain rule, given as (H. Li et al., 2020): 

𝑃(𝑋1, 𝑋2, ⋯ , 𝑋𝑛) = 𝑃(𝑋𝑛 ∣ 𝑋𝑛−1, 𝑋𝑛−2, ⋯ , 𝑋1)𝑃(𝑋𝑛−1 ∣ 𝑋𝑛−2, 𝑋𝑛−3, ⋯ , 𝑋1) ⋯ 𝑃(𝑋2 ∣ 𝑋1)𝑃(𝑋1)

= ∏  

𝑛

𝑖=1

 𝑃(𝑋𝑖 ∣ 𝑋𝑖−1, 𝑋𝑖−2, ⋯ , 𝑋1) 

(8) 

To specify the probability distribution of a Bayesian network, one must give the prior probabilities of all root nodes 

(nodes with no predecessors) and the conditional probabilities of all non-root nodes, given all possible combinations 

of their direct predecessors. Bayesian networks allow one to calculate the conditional probabilities of the nodes in the 

network given that the values of some of the nodes have been observed (Charniak, 1991). However, the conditional 

independence assumption of BNs defines the state of a node only depending on the state(s) of its parent(s), i.e. 

parents (𝑋𝑖). The joint probability function of a set of independent variables {𝑋1, 𝑋2, … , 𝑋𝑛} is given as:  

𝑃(𝑋1, 𝑋2, ⋯ , 𝑋𝑛) = ∏  

𝑛

𝑖=1

 𝑃(𝑋𝑖 ∣  parents (𝑋𝑖)) 
(9) 

where pa(𝑋𝑖) are the parent nodes set of node 𝑋𝑖, and if pa(𝑋𝑖) = 0, Pr {𝑋𝑖 ∣ pa (𝑋𝑖)} is the marginal distribution Pr (𝑋𝑖)  
(Z. Liu et al., 2023). 

 
3 Conclusions & further steps 

This report outlines the proposed data-driven numerical framework designed to evaluate the structural integrity of the 

wing system. It emphasizes the steps involved in a probabilistic system reliability estimation considering uncertainties 

in material properties and wind loads using stochastic FE simulations. The stochastic FE simulation is used to derive 

the fatigue performance response of components, and the estimation of fatigue lifetime relies on S-N curves. 

Furthermore, the report highlights the application of a Continuous Time Bayesian Networks (CTBNs) approach to 

incorporate the impact of component failures in predicting the overall reliability of the wing system.  
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